Copied to
clipboard

G = C2×C23.D10order 320 = 26·5

Direct product of C2 and C23.D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.D10, C24.22D10, (C2×C10).26C24, C4⋊Dic550C22, C22⋊C4.85D10, C102(C422C2), (C2×C20).126C23, (C4×Dic5)⋊72C22, (C22×C4).168D10, C23.78(C22×D5), C22.68(C23×D5), C22.71(C4○D20), C10.D447C22, (C23×C10).52C22, C23.D5.84C22, C22.65(D42D5), (C22×C10).118C23, (C22×C20).350C22, (C2×Dic5).186C23, (C22×Dic5).226C22, C52(C2×C422C2), (C2×C4×Dic5)⋊29C2, (C2×C4⋊Dic5)⋊18C2, C10.11(C2×C4○D4), C2.13(C2×C4○D20), C2.8(C2×D42D5), (C2×C22⋊C4).17D5, (C2×C10.D4)⋊34C2, (C10×C22⋊C4).20C2, (C2×C4).255(C22×D5), (C2×C23.D5).21C2, (C2×C10).100(C4○D4), (C5×C22⋊C4).108C22, SmallGroup(320,1154)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C23.D10
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — C2×C23.D10
C5C2×C10 — C2×C23.D10
C1C23C2×C22⋊C4

Generators and relations for C2×C23.D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=c, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, ebe-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 686 in 246 conjugacy classes, 111 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C422C2, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C2×C422C2, C4×Dic5, C10.D4, C4⋊Dic5, C23.D5, C5×C22⋊C4, C22×Dic5, C22×C20, C23×C10, C23.D10, C2×C4×Dic5, C2×C10.D4, C2×C4⋊Dic5, C2×C23.D5, C10×C22⋊C4, C2×C23.D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C422C2, C2×C4○D4, C22×D5, C2×C422C2, C4○D20, D42D5, C23×D5, C23.D10, C2×C4○D20, C2×D42D5, C2×C23.D10

Smallest permutation representation of C2×C23.D10
On 160 points
Generators in S160
(1 129)(2 130)(3 131)(4 132)(5 133)(6 134)(7 135)(8 136)(9 137)(10 138)(11 139)(12 140)(13 121)(14 122)(15 123)(16 124)(17 125)(18 126)(19 127)(20 128)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 81)(37 82)(38 83)(39 84)(40 85)(41 120)(42 101)(43 102)(44 103)(45 104)(46 105)(47 106)(48 107)(49 108)(50 109)(51 110)(52 111)(53 112)(54 113)(55 114)(56 115)(57 116)(58 117)(59 118)(60 119)(61 154)(62 155)(63 156)(64 157)(65 158)(66 159)(67 160)(68 141)(69 142)(70 143)(71 144)(72 145)(73 146)(74 147)(75 148)(76 149)(77 150)(78 151)(79 152)(80 153)
(2 75)(4 77)(6 79)(8 61)(10 63)(12 65)(14 67)(16 69)(18 71)(20 73)(21 105)(22 32)(23 107)(24 34)(25 109)(26 36)(27 111)(28 38)(29 113)(30 40)(31 115)(33 117)(35 119)(37 101)(39 103)(41 51)(42 82)(43 53)(44 84)(45 55)(46 86)(47 57)(48 88)(49 59)(50 90)(52 92)(54 94)(56 96)(58 98)(60 100)(81 91)(83 93)(85 95)(87 97)(89 99)(102 112)(104 114)(106 116)(108 118)(110 120)(122 160)(124 142)(126 144)(128 146)(130 148)(132 150)(134 152)(136 154)(138 156)(140 158)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 74)(2 75)(3 76)(4 77)(5 78)(6 79)(7 80)(8 61)(9 62)(10 63)(11 64)(12 65)(13 66)(14 67)(15 68)(16 69)(17 70)(18 71)(19 72)(20 73)(21 115)(22 116)(23 117)(24 118)(25 119)(26 120)(27 101)(28 102)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 109)(36 110)(37 111)(38 112)(39 113)(40 114)(41 91)(42 92)(43 93)(44 94)(45 95)(46 96)(47 97)(48 98)(49 99)(50 100)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(121 159)(122 160)(123 141)(124 142)(125 143)(126 144)(127 145)(128 146)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 153)(136 154)(137 155)(138 156)(139 157)(140 158)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 30 64 114)(2 39 65 103)(3 28 66 112)(4 37 67 101)(5 26 68 110)(6 35 69 119)(7 24 70 108)(8 33 71 117)(9 22 72 106)(10 31 73 115)(11 40 74 104)(12 29 75 113)(13 38 76 102)(14 27 77 111)(15 36 78 120)(16 25 79 109)(17 34 80 118)(18 23 61 107)(19 32 62 116)(20 21 63 105)(41 123 81 151)(42 132 82 160)(43 121 83 149)(44 130 84 158)(45 139 85 147)(46 128 86 156)(47 137 87 145)(48 126 88 154)(49 135 89 143)(50 124 90 152)(51 133 91 141)(52 122 92 150)(53 131 93 159)(54 140 94 148)(55 129 95 157)(56 138 96 146)(57 127 97 155)(58 136 98 144)(59 125 99 153)(60 134 100 142)

G:=sub<Sym(160)| (1,129)(2,130)(3,131)(4,132)(5,133)(6,134)(7,135)(8,136)(9,137)(10,138)(11,139)(12,140)(13,121)(14,122)(15,123)(16,124)(17,125)(18,126)(19,127)(20,128)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(41,120)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,108)(50,109)(51,110)(52,111)(53,112)(54,113)(55,114)(56,115)(57,116)(58,117)(59,118)(60,119)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,160)(68,141)(69,142)(70,143)(71,144)(72,145)(73,146)(74,147)(75,148)(76,149)(77,150)(78,151)(79,152)(80,153), (2,75)(4,77)(6,79)(8,61)(10,63)(12,65)(14,67)(16,69)(18,71)(20,73)(21,105)(22,32)(23,107)(24,34)(25,109)(26,36)(27,111)(28,38)(29,113)(30,40)(31,115)(33,117)(35,119)(37,101)(39,103)(41,51)(42,82)(43,53)(44,84)(45,55)(46,86)(47,57)(48,88)(49,59)(50,90)(52,92)(54,94)(56,96)(58,98)(60,100)(81,91)(83,93)(85,95)(87,97)(89,99)(102,112)(104,114)(106,116)(108,118)(110,120)(122,160)(124,142)(126,144)(128,146)(130,148)(132,150)(134,152)(136,154)(138,156)(140,158), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,101)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(121,159)(122,160)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,30,64,114)(2,39,65,103)(3,28,66,112)(4,37,67,101)(5,26,68,110)(6,35,69,119)(7,24,70,108)(8,33,71,117)(9,22,72,106)(10,31,73,115)(11,40,74,104)(12,29,75,113)(13,38,76,102)(14,27,77,111)(15,36,78,120)(16,25,79,109)(17,34,80,118)(18,23,61,107)(19,32,62,116)(20,21,63,105)(41,123,81,151)(42,132,82,160)(43,121,83,149)(44,130,84,158)(45,139,85,147)(46,128,86,156)(47,137,87,145)(48,126,88,154)(49,135,89,143)(50,124,90,152)(51,133,91,141)(52,122,92,150)(53,131,93,159)(54,140,94,148)(55,129,95,157)(56,138,96,146)(57,127,97,155)(58,136,98,144)(59,125,99,153)(60,134,100,142)>;

G:=Group( (1,129)(2,130)(3,131)(4,132)(5,133)(6,134)(7,135)(8,136)(9,137)(10,138)(11,139)(12,140)(13,121)(14,122)(15,123)(16,124)(17,125)(18,126)(19,127)(20,128)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(41,120)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,108)(50,109)(51,110)(52,111)(53,112)(54,113)(55,114)(56,115)(57,116)(58,117)(59,118)(60,119)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,160)(68,141)(69,142)(70,143)(71,144)(72,145)(73,146)(74,147)(75,148)(76,149)(77,150)(78,151)(79,152)(80,153), (2,75)(4,77)(6,79)(8,61)(10,63)(12,65)(14,67)(16,69)(18,71)(20,73)(21,105)(22,32)(23,107)(24,34)(25,109)(26,36)(27,111)(28,38)(29,113)(30,40)(31,115)(33,117)(35,119)(37,101)(39,103)(41,51)(42,82)(43,53)(44,84)(45,55)(46,86)(47,57)(48,88)(49,59)(50,90)(52,92)(54,94)(56,96)(58,98)(60,100)(81,91)(83,93)(85,95)(87,97)(89,99)(102,112)(104,114)(106,116)(108,118)(110,120)(122,160)(124,142)(126,144)(128,146)(130,148)(132,150)(134,152)(136,154)(138,156)(140,158), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,101)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(121,159)(122,160)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,30,64,114)(2,39,65,103)(3,28,66,112)(4,37,67,101)(5,26,68,110)(6,35,69,119)(7,24,70,108)(8,33,71,117)(9,22,72,106)(10,31,73,115)(11,40,74,104)(12,29,75,113)(13,38,76,102)(14,27,77,111)(15,36,78,120)(16,25,79,109)(17,34,80,118)(18,23,61,107)(19,32,62,116)(20,21,63,105)(41,123,81,151)(42,132,82,160)(43,121,83,149)(44,130,84,158)(45,139,85,147)(46,128,86,156)(47,137,87,145)(48,126,88,154)(49,135,89,143)(50,124,90,152)(51,133,91,141)(52,122,92,150)(53,131,93,159)(54,140,94,148)(55,129,95,157)(56,138,96,146)(57,127,97,155)(58,136,98,144)(59,125,99,153)(60,134,100,142) );

G=PermutationGroup([[(1,129),(2,130),(3,131),(4,132),(5,133),(6,134),(7,135),(8,136),(9,137),(10,138),(11,139),(12,140),(13,121),(14,122),(15,123),(16,124),(17,125),(18,126),(19,127),(20,128),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,81),(37,82),(38,83),(39,84),(40,85),(41,120),(42,101),(43,102),(44,103),(45,104),(46,105),(47,106),(48,107),(49,108),(50,109),(51,110),(52,111),(53,112),(54,113),(55,114),(56,115),(57,116),(58,117),(59,118),(60,119),(61,154),(62,155),(63,156),(64,157),(65,158),(66,159),(67,160),(68,141),(69,142),(70,143),(71,144),(72,145),(73,146),(74,147),(75,148),(76,149),(77,150),(78,151),(79,152),(80,153)], [(2,75),(4,77),(6,79),(8,61),(10,63),(12,65),(14,67),(16,69),(18,71),(20,73),(21,105),(22,32),(23,107),(24,34),(25,109),(26,36),(27,111),(28,38),(29,113),(30,40),(31,115),(33,117),(35,119),(37,101),(39,103),(41,51),(42,82),(43,53),(44,84),(45,55),(46,86),(47,57),(48,88),(49,59),(50,90),(52,92),(54,94),(56,96),(58,98),(60,100),(81,91),(83,93),(85,95),(87,97),(89,99),(102,112),(104,114),(106,116),(108,118),(110,120),(122,160),(124,142),(126,144),(128,146),(130,148),(132,150),(134,152),(136,154),(138,156),(140,158)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,74),(2,75),(3,76),(4,77),(5,78),(6,79),(7,80),(8,61),(9,62),(10,63),(11,64),(12,65),(13,66),(14,67),(15,68),(16,69),(17,70),(18,71),(19,72),(20,73),(21,115),(22,116),(23,117),(24,118),(25,119),(26,120),(27,101),(28,102),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,109),(36,110),(37,111),(38,112),(39,113),(40,114),(41,91),(42,92),(43,93),(44,94),(45,95),(46,96),(47,97),(48,98),(49,99),(50,100),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(121,159),(122,160),(123,141),(124,142),(125,143),(126,144),(127,145),(128,146),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,153),(136,154),(137,155),(138,156),(139,157),(140,158)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,30,64,114),(2,39,65,103),(3,28,66,112),(4,37,67,101),(5,26,68,110),(6,35,69,119),(7,24,70,108),(8,33,71,117),(9,22,72,106),(10,31,73,115),(11,40,74,104),(12,29,75,113),(13,38,76,102),(14,27,77,111),(15,36,78,120),(16,25,79,109),(17,34,80,118),(18,23,61,107),(19,32,62,116),(20,21,63,105),(41,123,81,151),(42,132,82,160),(43,121,83,149),(44,130,84,158),(45,139,85,147),(46,128,86,156),(47,137,87,145),(48,126,88,154),(49,135,89,143),(50,124,90,152),(51,133,91,141),(52,122,92,150),(53,131,93,159),(54,140,94,148),(55,129,95,157),(56,138,96,146),(57,127,97,155),(58,136,98,144),(59,125,99,153),(60,134,100,142)]])

68 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G···4N4O4P4Q4R5A5B10A···10N10O···10V20A···20P
order12···2224444444···444445510···1010···1020···20
size11···14422224410···1020202020222···24···44···4

68 irreducible representations

dim11111112222224
type+++++++++++-
imageC1C2C2C2C2C2C2D5C4○D4D10D10D10C4○D20D42D5
kernelC2×C23.D10C23.D10C2×C4×Dic5C2×C10.D4C2×C4⋊Dic5C2×C23.D5C10×C22⋊C4C2×C22⋊C4C2×C10C22⋊C4C22×C4C24C22C22
# reps1812121212842168

Matrix representation of C2×C23.D10 in GL5(𝔽41)

400000
01000
00100
000400
000040
,
400000
01000
004000
00010
0003940
,
10000
040000
004000
000400
000040
,
10000
01000
00100
000400
000040
,
10000
02000
002000
0003232
00009
,
10000
002000
02000
00011
000040

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,39,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,2,0,0,0,0,0,20,0,0,0,0,0,32,0,0,0,0,32,9],[1,0,0,0,0,0,0,2,0,0,0,20,0,0,0,0,0,0,1,0,0,0,0,1,40] >;

C2×C23.D10 in GAP, Magma, Sage, TeX

C_2\times C_2^3.D_{10}
% in TeX

G:=Group("C2xC2^3.D10");
// GroupNames label

G:=SmallGroup(320,1154);
// by ID

G=gap.SmallGroup(320,1154);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,1571,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=c,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
×
𝔽